Chapter review

1 a

1 b Intersection point A :

$$
\begin{aligned}
2(x+1) & =2-x \\
2 x+2 & =2-x \\
3 x & =0 \\
x & =0
\end{aligned}
$$

Intersection point B is on the reflected part of the modulus graph.

$$
\begin{aligned}
-2(x+1) & =2-x \\
-2 x-2 & =2-x \\
-x & =4 \\
x & =-4
\end{aligned}
$$

2

Minimum value of $y=|2 x-11|$ is

$$
y=0 \text { at } x=\frac{11}{2}
$$

For two distinct solutions to
$|2 x-11|=\frac{1}{2} x-k$, we must have
$\frac{1}{2} x-k>0$ at $x=\frac{11}{2}$
$\frac{1}{2} \times \frac{11}{2}+k>0$
$k>-\frac{11}{4}$

3

At A:

$$
\begin{aligned}
-(5 x-2) & =-\frac{1}{4} x+8 \\
-20 x+8 & =-x+32 \\
-19 x & =24 \\
x & =-\frac{24}{19}
\end{aligned}
$$

At B:

$$
\begin{aligned}
5 x-2 & =-\frac{1}{4} x+8 \\
20 x-8 & =-x+32 \\
21 x & =40 \\
x & =\frac{40}{21}
\end{aligned}
$$

So the solution are

$$
x=-\frac{24}{19} \text { and } x=\frac{40}{21}
$$

4 a $y=|12-5 x|=5\left|-\left(x-\frac{12}{5}\right)\right|$
Start with $y=|x|$
$y=\left|x-\frac{12}{5}\right|$ is a horizontal
translation of $+\frac{12}{5}$

$y=5\left|x-\frac{12}{5}\right|$ is a vertical stretch, scale factor 5

b The graphs do not intersect, so there are no solutions.

Pure Mathematics 3

5 a i One-to-many.
ii Not a function.

x value a gets mapped to two values of y.
x value b gets mapped to no values.
b i One-to-one.
ii Is a function.

5 c i Many-to-one.
ii Is a function.

d i Many-to-one.
ii Is a function.

5 e i One-to-one.
ii Not a function.

x value a doesn't get mapped to any value of y. It could be redefined as a function if the domain is said to exclude point a.
f i One-to-one.
ii Not a function for this domain.

x values less than a don't get mapped anywhere. Again, we could define the domain to be $x \leqslant a$ and then it would be a function.

6 a

For $x \leqslant 1, \mathrm{f}(x)=-x$
This is a straight line of gradient -1 .
At point $x=1$, its y-coordinate is -1 .

For $x>1, \mathrm{f}(x)=x-2$
This is a straight line of gradient +1 .
At point $x=1$, its y-coordinate is also -1 .

Hence, the graph is said to be continuous.
b There are two values x in the range
$-2 \leqslant x \leqslant 6$ for which $\mathrm{f}(x)=-\frac{1}{2}$

Point a is where
$-x=-\frac{1}{2} \Rightarrow x=\frac{1}{2}$
Point b is where

$$
x-2=-\frac{1}{2} \Rightarrow x=1 \frac{1}{2}
$$

Hence, the values of x for which
$\mathrm{f}(x)=-\frac{1}{2}$ are $x=\frac{1}{2}$ and $x=1 \frac{1}{2}$

7 a $\mathrm{pq}(x)=\mathrm{p}(2 x+1)$

$$
\begin{aligned}
& =(2 x+1)^{2}+3(2 x+1)-4 \\
& =4 x^{2}+4 x+1+6 x+3-4 \\
& =4 x^{2}+10 x
\end{aligned}
$$

b $\mathrm{qq}(x)=\mathrm{q}(2 x+1)$

$$
\begin{aligned}
& =2(2 x+1)+1 \\
& =4 x+3
\end{aligned}
$$

$\mathrm{pq}(x)=\mathrm{qq}(x)$ gives

$$
4 x^{2}+10 x=4 x+3
$$

$$
4 x^{2}+6 x-3=0
$$

Using the formula:

$$
\begin{aligned}
& x=\frac{-6 \pm \sqrt{6^{2}-4 \times 4 \times(-3)}}{2 \times 4} \\
& x=\frac{-6 \pm \sqrt{84}}{8} \\
& x=\frac{-6 \pm 2 \sqrt{21}}{8} \\
& x=\frac{-3 \pm \sqrt{21}}{4}
\end{aligned}
$$

8 a $y=2 x+7$ is a straight line with gradient 2 and y-intercept 7

For $x \geqslant 0$, the range is $\mathrm{g}(x) \geqslant 7$

8 b The range is $g^{-1}(x) \geqslant 0$.
To find the equation of the inverse function, you can use a flow chart.

$g^{-1}(x)=\frac{x-7}{2}$ and has domain $x \geqslant 7$
c

$\mathrm{g}^{-1}(x)$ is the reflection of $g(x)$ in the line $y=x$.

9 a To find $\mathrm{f}^{-1}(x)$, you can change the subject of the formula.

$$
\begin{aligned}
\text { Let } y & =\frac{2 x+3}{x-1} \\
y(x-1) & =2 x+3 \\
y x-y & =2 x+3 \\
y x-2 x & =y+3 \\
x(y-2) & =y+3 \\
x & =\frac{y+3}{y-2} \\
\text { Therefore } \mathrm{f}^{-1}(x) & =\frac{x+3}{x-2}
\end{aligned}
$$

9 b i Domain $\mathrm{f}(x)=$ Range $\mathrm{f}^{-1}(x)$
\therefore Range $\mathrm{f}^{-1}(x)=\{y \in \square, y>1\}$
ii Range $\mathrm{f}(x)=$ Domain $\mathrm{f}^{-1}(x)$
Now range of $\mathrm{f}(x)$ is

$$
\{\mathrm{f}(x) \in \square, \mathrm{f}(x)>2\}
$$

\therefore Domain $\mathrm{f}^{-1}(x)=\{x \in \square, x>2\}$

10a $\mathrm{f}(x)=\frac{x}{x^{2}-1}-\frac{1}{x+1}$

$$
\begin{aligned}
& =\frac{x}{(x+1)(x-1)}-\frac{1}{(x+1)} \\
& =\frac{x}{(x+1)(x-1)}-\frac{x-1}{(x+1)(x-1)} \\
& =\frac{x-(x-1)}{(x+1)(x-1)} \\
& =\frac{1}{(x+1)(x-1)}
\end{aligned}
$$

b Consider the graph of

$$
y=\frac{1}{(x-1)(x+1)} \text { for } x \in \square:
$$

For $x>1, \mathrm{f}(x)>0$

$$
10 \mathrm{c} \quad \mathrm{gf}(x)=\mathrm{g}\left(\frac{1}{(x-1)(x+1)}\right)
$$

$$
\begin{aligned}
\operatorname{gf}(x)=70 \Rightarrow 2(x-1)(x+1) & =70 \\
(x-1)(x+1) & =35 \\
x^{2}-1 & =35 \\
x^{2} & =36 \\
x & = \pm 6
\end{aligned}
$$

$$
11 \mathbf{a} \quad f(7)=4(7-2)
$$

$$
=4 \times 5
$$

$$
=20
$$

$$
g(3)=3^{3}+1
$$

$$
=27+1
$$

$$
=28
$$

$$
\begin{aligned}
\mathrm{h}(-2) & =3^{-2} \\
& =\frac{1}{3^{2}} \\
& =\frac{1}{9}
\end{aligned}
$$

11 b $\mathrm{f}(x)=4(x-2)=4 x-8$
This is a straight line with gradient 4 and intercept -8 .
The domain tells us that $x \geqslant 0$, so the graph of $y=\mathrm{f}(x)$ is:

The range of $\mathrm{f}(x)$ is
$\mathrm{f}(x) \in \square, \mathrm{f}(x) \geqslant-8$
$g(x)=x^{3}+1$

The range of $\mathrm{g}(x)$ is $\mathrm{g}(x) \in \square$
c Let $y=x^{3}+1$
(change the subject of the formula)

$$
\begin{gathered}
y-1=x^{3} \\
\sqrt[3]{y-1}=x
\end{gathered}
$$

Hence $g^{-1}(x)=\sqrt[3]{x-1} \quad\{x \in \square\}$

11 e First find $\operatorname{gh}(x)$:

$$
\begin{aligned}
\operatorname{gh}(x) & =\operatorname{g}\left(3^{x}\right) \\
& =\left(3^{x}\right)^{3}+1 \\
& =3^{3 x}+1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{gh}(a) & =244 \\
3^{3 a}+1 & =244 \\
3^{3 a} & =243 \\
3^{3 a} & =3^{5} \\
3 a & =5 \\
a & =\frac{5}{3}
\end{aligned}
$$

12 a f^{-1} exists when f is one-to-one.
Now $\mathrm{f}(x)=x^{2}+6 x-4$
Completing the square:
$\mathrm{f}(x)=(x+3)^{2}-13$
The minimum value is
$\mathrm{f}(x)=-13$ when $x+3=0$

$$
\Rightarrow x=-3
$$

Hence, f is one-to-one when $x>-3$
So least value of a is $a=-3$
b Let $y=\mathrm{f}(x)$
$y=x^{2}+6 x-4$
$y=(x+3)^{2}-13$
$y+13=(x+3)^{2}$
$x+3=\sqrt{y+13}$
$x=\sqrt{y+13}-3$

So $\mathrm{f}^{-1}: x \mapsto \sqrt{x+13}-3$

For $a=0$, Range $\mathrm{f}(x)$ is $y>-4$
So Domain $\mathrm{f}^{-1}(x)$ is $x>-4$
d $\mathrm{fg}(x)=\mathrm{f}\left(x^{3}+1\right)$

$$
\begin{aligned}
& =4\left(x^{3}+1-2\right) \\
& =4\left(x^{3}-1\right)
\end{aligned}
$$

13a $\mathrm{f}: ~ \mathrm{x} \mapsto 4 x-1$
Let $y=4 x-1$ and change
the subject of the formula.

$$
\begin{aligned}
& \Rightarrow y+1=4 x \\
& \Rightarrow \quad x=\frac{y+1}{4}
\end{aligned}
$$

Hence $\mathrm{f}^{-1}: x \mapsto \frac{x+1}{4}, x \in \square$
b $\operatorname{gf}(x)=\mathrm{g}(4 x-1)$

$$
\begin{aligned}
& =\frac{3}{2(4 x-1)-1} \\
& =\frac{3}{8 x-3}
\end{aligned}
$$

Hence gf : $x \mapsto \frac{3}{8 x-3}$
$\mathrm{gf}(x)$ is undefined when $8 x-3=0$
That is, at $x=\frac{3}{8}$
\therefore Domain $\operatorname{gf}(x)=\left\{x \in \square, x \neq \frac{3}{8}\right\}$
c If $2 \mathrm{f}(x)=\mathrm{g}(x)$
$2 \times(4 x-1)=\frac{3}{2 x-1}$
$8 x-2=\frac{3}{2 x-1}$
$(8 x-2)(2 x-1)=3$
$16 x^{2}-12 x+2=3$
$16 x^{2}-12 x-1=0$
Use $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
with $a=16, b=-12$ and $c=-1$.
Then $x=\frac{12 \pm \sqrt{144+64}}{32}$

$$
=\frac{12 \pm \sqrt{208}}{32}
$$

$$
=0.826,-0.076
$$

Values of x are -0.076 and 0.826

14 a Let $y=\frac{x}{x-2}$

$$
\begin{aligned}
y(x-2) & =x \\
y x-2 y & =x \quad \text { (rearrange) } \\
y x-x & =2 y \\
x(y-1) & =2 y
\end{aligned}
$$

$$
x=\frac{2 y}{y-1}
$$

$\mathrm{f}^{-1}(x)=\frac{2 x}{x-1}, x \neq 1$
b The range of $\mathrm{f}^{-1}(x)$ is the domain of $\mathrm{f}(x)$:

$$
\left\{\mathrm{f}^{-1}(x) \in \square, \mathrm{f}^{-1}(x) \neq 2\right\}
$$

c $\operatorname{gf}(1.5)=\mathrm{g}\left(\frac{1.5}{1.5-2}\right)$

$$
=\mathrm{g}\left(\frac{1.5}{-0.5}\right)
$$

$$
=g(-3)
$$

$$
=\frac{3}{-3}
$$

$$
=-1
$$

d If $\mathrm{g}(x)=\mathrm{f}(x)+4$

$$
\begin{aligned}
\frac{3}{x} & =\frac{x}{x-2}+4 \\
3(x-2) & =x^{2}+4 x(x-2) \\
3 x-6 & =x^{2}+4 x^{2}-8 x \\
0 & =5 x^{2}-11 x+6 \\
0 & =(5 x-6)(x-1) \\
\Rightarrow x= & \frac{6}{5}, 1
\end{aligned}
$$

$15 y=5-x$ is a straight line with gradient
-1 passing through 5 on the y axis.
$y=x^{2}$ is a \cup-shaped quadratic passing through $(0,0)$

a $\mathrm{n}(-3)=5-(-3)$
$=5+3$
$=8$

$$
\mathrm{n}(3)=32
$$

$$
=9
$$

15 b From the diagram, you can see there are two values of x for which $\mathrm{n}(x)=50$

The negative value of x is where $5-x=50$

$$
\begin{aligned}
& x=5-50 \\
& x=-45
\end{aligned}
$$

The positive value of x is where

$$
\begin{aligned}
x^{2} & =50 \\
x & =\sqrt{50} \\
x & =5 \sqrt{2}
\end{aligned}
$$

The values of x such that $\mathrm{n}(x)=50$ are -45 and $+5 \sqrt{2}$

16 a

$16 \mathrm{~b} y=|\tan (x)|$ reflects the negative parts of $\tan x$ in the x axis.

c $y=\tan (|x|)$ reflects $\tan x$ in the y-axis.

17 a

b

c

18 a $\mathrm{g}(x) \geqslant 0$
b $\operatorname{gf}(x)=\operatorname{g}(4-x)$

$$
\begin{aligned}
& =3(4-x)^{2} \\
& =3 x^{2}-24 x+48
\end{aligned}
$$

$\mathrm{gf}(x)=48$
$3 x^{2}-24 x+48=48$

$$
3 x^{2}-24 x=0
$$

$$
3 x(x-8)=0
$$

$x=0$ or $x=8$
c

$|\mathrm{f}(x)|=2$ when $|4-x|=2$, so
$4-x=2 \Rightarrow x=2$
or $\quad-(4-x)=2 \Rightarrow x=6$

19 a

For $y=|2 x-a|$:
When $x=0, y=|-a|=a \quad(0, a)$
When $y=0,2 x-a=0$

$$
\Rightarrow x=\frac{a}{2} \quad\left(\frac{a}{2}, 0\right)
$$

19b $y=\mathrm{f}(2 x)$
Horizontal stretch, scale factor $\frac{1}{2}$

c $|2 x-a|=\frac{1}{2} x$
Either $(2 x-a)=\frac{1}{2} x$

$$
\Rightarrow a=\frac{3}{2} x
$$

Given that $x=4$,
$a=\frac{3 \times 4}{2}=6$
Or

$$
\begin{aligned}
-(2 x-a) & =\frac{1}{2} x \\
& \Rightarrow a=\frac{5}{2} x
\end{aligned}
$$

Given that $x=4$,
$a=\frac{5 \times 4}{2}=10$

20 a

For $y=|x-2 a|$:
When $x=0, y=|-2 a|=2 a \quad(0,2 a)$
When $y=0, x-2 a=0$
$\Rightarrow x=2 a \quad(2 a, 0)$

20 b $|x-2 a|=\frac{1}{3} x$
Either $(x-2 a)=\frac{1}{3} x$

$$
\Rightarrow x-\frac{1}{3} x=2 a
$$

$$
\Rightarrow \frac{2}{3} x=2 a
$$

$$
\Rightarrow x=3 a
$$

or $-(x-2 a)=\frac{1}{3} x$
$\Rightarrow-x+2 a=\frac{1}{3} x$
$\Rightarrow \frac{4}{3} x=2 a$
$\Rightarrow x=\frac{3}{2} a$

Pure Mathematics 3

20 c $y=-|x-2 a|$
Reflect $y=|x-2 a|$ in the x-axis

$y=a-|x-2 a|$ Vertical translation by $+a$
For $y=a-|x-2 a|$:
When $x=0$,

$$
\begin{aligned}
y & =a-|-2 a| \\
& =a-2 a \\
& =-a \quad(0,-a)
\end{aligned}
$$

When $y=0$,

$$
\begin{aligned}
a-|x-2 a| & =0 \\
|x-2 a| & =a
\end{aligned}
$$

Either $x-2 a=a$

$$
\Rightarrow x=3 a \quad(3 a, 0)
$$

or $-(x-2 a)=a$
$\Rightarrow-x+2 a=a$
$\Rightarrow x=a \quad(a, 0)$

21 a \& b

When $x=0, y=|a|=a \quad(0, a)$

When $y=0,2 x+a=0$

$$
\Rightarrow x=-\frac{a}{2} \quad\left(-\frac{a}{2}, 0\right)
$$

c Intersection of graphs in \mathbf{b} gives solutions to the equation:

$$
\begin{aligned}
|2 x+a| & =\frac{1}{x} \\
x|x+a| & =1 \\
x|2 x+a|-1 & =0
\end{aligned}
$$

The graphs intersect once only, so $x|2 x+a|-1=0$ has only one solution.

21 d The intersection point is on the nonreflected part of the modulus graph, so here $|2 x-a|=2 x-a$

$$
\begin{aligned}
x(2 x+a)-1 & =0 \\
2 x^{2}+a x-1 & =0 \\
x & =\frac{-a \pm \sqrt{a^{2}+8}}{4}
\end{aligned}
$$

As shown on the graph, x is positive at intersection,
so $x=\frac{-a+\sqrt{a^{2}+8}}{4}$

22a $\mathrm{f}(x)=x^{2}-7 x+5 \ln x+8$
$\mathrm{f}^{\prime}(x)=2 x-7+\frac{5}{x}$
At stationary points, $\mathrm{f}^{\prime}(x)=0$:

$$
\begin{aligned}
2 x-7+\frac{5}{x} & =0 \\
2 x^{2}-7 x+5 & =0 \\
(2 x-5)(x-1) & =0 \\
x & =\frac{5}{2}, x=1
\end{aligned}
$$

Point A : $x=1$,

$$
\begin{aligned}
\mathrm{f}(x) & =1-7+5 \ln 1+8 \\
& =2 \\
& A \text { is }(1,2)
\end{aligned}
$$

Point $B: x=\frac{5}{2}$,

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{25}{4}-\frac{35}{2}+5 \ln \frac{5}{2}+8 \\
& =5 \ln \frac{5}{2}-\frac{13}{4} \\
& B \text { is }\left(\frac{5}{2}, 5 \ln \frac{5}{2}-\frac{13}{4}\right)
\end{aligned}
$$

$22 \mathrm{~b} y=\mathrm{f}(x-2)$
Horizontal translation of +2 .
Graph looks like:

$y=-3 f(x-2)$
Reflection in the x -axis, and vertical stretch, scale factor 3 .
Graph looks like:

22 c Using the transformations, point (X, Y)
becomes $(X+2,-3 Y)$
$(1,2) \rightarrow(3,-6)$
Minimum

$$
\begin{aligned}
& \left(\frac{5}{2}, 5 \ln \frac{5}{2}-\frac{13}{4}\right) \rightarrow \\
& \quad\left(\frac{9}{2}, \frac{39}{4}-15 \ln \frac{5}{2}\right)
\end{aligned}
$$

Maximum
23 a The range of $\mathrm{f}(x)$ is $-2 \leqslant \mathrm{f}(x) \leqslant 18$
b $\mathrm{ff}(-3)=\mathrm{f}(-2)$
Using $\mathrm{f}(x)=2 x+4$
$\mathrm{f}(-2)=2 \times(-2)+4=0$
c

23 d Look at each section of $\mathrm{f}(x)$
separately.
$-5 \leqslant x \leqslant-3$:
Gradient $=\frac{-2-6}{-3-(-5)}=-4$
$\therefore \mathrm{f}(x)-(-2)=-4(x-(-3)) \Rightarrow \mathrm{f}(x)=-4 x-14$
So in this region, $\mathrm{f}(x)=2$ when $x=-4$
$\therefore \mathrm{fg}(x)=2$ has a corresponding solution if
$\mathrm{g}(x)=-4 \Rightarrow \mathrm{~g}(x)+4=x^{2}-7 x+14=0$
Discriminant $(-7)^{2}-4(1)(14)=-7<0$
So no solution
$-3 \leqslant x \leqslant 7$: Gradient $=\frac{18-(-2)}{7-(-3)}=2$
$\therefore \mathrm{f}(x)-(-2)=2(x-(-3)) \Rightarrow \mathrm{f}(x)=2 x+4$
So in this region, $\mathrm{f}(x)=2$ when $x=-1$
$\therefore \mathrm{fg}(x)=2$ has a corresponding solution if
$\mathrm{g}(x)=-1 \Rightarrow \mathrm{~g}(x)+1=x^{2}-7 x+11=0$
$x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(1)(11)}}{2(1)}=\frac{7 \pm \sqrt{5}}{2}$
$\therefore x=\frac{7+\sqrt{5}}{2}$ or $x=\frac{7-\sqrt{5}}{2}$
24 a The range of $\mathrm{p}(x)$ is $\mathrm{p}(x) \leqslant 10$
b $\mathrm{p}(x)$ is many-to-one, therefore the inverse is one-to-many, which is not a function.
c At first point of intersection:

$$
\begin{aligned}
2(x+4)+10 & =-4 \\
2 x+18 & =-4 \\
x & =-11
\end{aligned}
$$

At the other point of intersection:

$$
\begin{aligned}
&-2(x+4)+10=-4 \\
&-2 x+2=-4 \\
& x=3 \\
&-11<x<3
\end{aligned}
$$

24 d For no solutions, $\mathrm{p}(x)>10$ at $x=-4$

$$
\text { So }-\frac{1}{2} x+k>10 \text { at } x=-4
$$

$$
-\frac{1}{2}(-4)+k>10
$$

$$
\begin{aligned}
2+k & >10 \\
k & >8
\end{aligned}
$$

Challenge

a

b $y=(a+x)(a-x)$
When $y=0, x=-a$ or $x=a$
When $x=0, y=a^{2}$
$(-a, 0),(a, 0),\left(0, a^{2}\right)$
c When $x=4, y=a^{2}-x^{2}$

$$
\begin{aligned}
& \quad=a^{2}-16 \\
& \text { and } \quad y=x+a \\
& =4+a \\
& a^{2}-16=4+a \\
& a^{2}-a-20=0 \\
& (a-5)(a+4)=0 \\
& \text { As } a>1, a=5
\end{aligned}
$$

